Dr. Lukas Papritz
Dr. Lukas Papritz
Lecturer at the Department of Environmental Systems Science
Additional information
Research area
In my research I address the dynamics of large-scale weather systems such as extratropical cyclones and atmospheric blocking and their role in the climate system with a focus on high-latitudes. In particular, I am / have been working on:
- role of synoptic weather systems and air mass transformations in Arctic climate system
- atmosphere - ocean interaction and air-sea heat flux variability
- energetics and maintenance of baroclinicity along storm tracks
- physics of temperature extremes
- dynamical core development
Additional information
2024:
- Federer, M., L. Papritz, M. Sprenger, C. M. Grams, and M. Wenta, 2024: On the Local Available Potential Energy Perspective of Baroclinic Wave Development. J. Atmos. Sci., 81, 871–886, https://doi.org/10.1175/JAS-D-23-0138.1.
- Hotz, B., L. Papritz, and M. Röthlisberger, 2024: Understanding the vertical temperature structure of recent record-shattering heatwaves, Weather Clim. Dynam., 5, 323–343, https://doi.org/10.5194/wcd-5-323-2024
- Wenta, M., C. M. Grams, L. Papritz, and M. Federer, 2024: Linking Gulf Stream Air-Sea Interactions to the exceptional blocking episode in February 2019: A Lagrangian Perspective, Weather Clim. Dynam., 5, 181–209, https://doi.org/10.5194/wcd-5-181-2024
- Jansing, L., L. Papritz, and M. Sprenger, 2024: A Lagrangian framework for detecting and characterizing the descent of foehn from Alpine to local scales, Weather Clim. Dynam., 5, 463–489, https://doi.org/10.5194/wcd-5-463-2024
2023:
- Papritz, L. and M. Röthlisberger, 2023: A novel temperature anomaly source diagnostic: Method and application to the 2021 heatwave in the Pacific Northwest, Geophys. Res. Lett., 50, e2023GL105641, https://doi.org/10.1029/2023GL105641
- Papritz, L., S. Murto, M. Röthlisberger, R. Caballero, G. Messori, G. Svensson, and H. Wernli, 2023: The role of local and remote processes for wintertime surface energy budget extremes over Arctic sea ice, J. Climate, 36, 7657–7674, https://doi.org/10.1175/JCLI-D-22-0883.1
- Röthlisberger, M. and L. Papritz, 2023: A global quantification of the physical processes leading to near-surface cold extremes. Geophys. Res. Lett., 50, e2022GL101670, https://doi.org/10.1029/2022GL101670
- Röthlisberger, M. and L. Papritz, 2023: Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci., https://doi.org/10.1038/s41561-023-01126-1
- Nygård, T., L. Papritz, T. Naakka, and T. Vihma, 2023: Cold wintertime air masses over Europe: Where do they come from and how do they form?, Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023
- Hartmuth, K., L. Papritz, M. Boettcher, and H. Wernli, 2023: Arctic seasonal variability and extremes, and the role of weather systems in a changing climate, Geophys. Res. Lett., 50, e2022GL102349, https://doi.org/10.1029/2022GL102349
- Svingen, K., A. Brakstad, K. Våge, W. von Appen, and L. Papritz, 2023:The Impact of Cold-Air Outbreaks and Oceanic Lateral Fluxes on Dense-Water Formation in the Greenland Sea from a 10-Year Moored Record (1999–2009). J. Phys. Oceanogr., 53, 1499–1517, https://doi.org/10.1175/JPO-D-22-0160.1.
- Murto, S., L. Papritz, G. Messori, R. Caballero, G. Svensson, and H. Wernli, 2023: Extreme Surface Energy Budget Anomalies in the High Arctic in Winter, J. Climate, 36, 3591–3609, https://doi.org/10.1175/JCLI-D-22-0209.1
2022:
- Jansing, L., L. Papritz, B. Dürr, D. Gerstgrasser, and M. Sprenger, 2022: Classification of Alpine south foehn based on 5 years of kilometre-scale analysis data, Weather Clim. Dynam., 3, 1113–1138, https://doi.org/10.5194/wcd-3-1113-2022
- Schemm, S., Papritz, L., and G. Rivière, 2022: Storm track response to uniform global warming downstream of an idealized sea surface temperature front, Weather Clim. Dynam., 3, 601–623, https://doi.org/10.5194/wcd-3-601-2022
- Hartmuth, K., M. Boettcher, H. Wernli, and L. Papritz, 2022: Identification, characteristics and dynamics of Arctic extreme seasons, Weather Clim. Dynam., 3, 89–111, https://doi.org/10.5194/wcd-3-89-2022
- Murto, S., R. Caballero, G. Svensson, and L. Papritz, 2022: Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic, Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022
- Papritz, L., D. Hauswirth, and K. Hartmuth, 2022: Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic, Weather Clim. Dynam., 3, 1–20, https://doi.org/10.5194/wcd-3-1-2022
2021:
- Papritz, L., F. Aemisegger, and H. Wernli, 2021: Sources and transport pathways of precipitating waters in cold-season deep North Atlantic cyclones, J. Atmos. Sci., 78, 3349 - 3368, doi: 10.1175/JAS-D-21-0105.1
2020:
- Papritz, L., 2020: Arctic lower tropospheric warm and cold extremes: horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features, J. Climate, 33, 993-1016, doi: 10.1175/JCLI-D-19-0638.1
- Papritz, L., and E. Dunn‐Sigouin, 2020: What configuration of the atmospheric circulation drives extreme net and total moisture transport into the Arctic? Geophys. Res. Lett., 47, e2020GL089769. https://doi.org/10.1029/2020GL089769
- Hermann, M., L. Papritz, and H. Wernli, 2020: A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017, Weather Clim. Dynam., 1, 497–518, https://doi.org/10.5194/wcd-1-497-2020
- Domeisen, D. I. V., C. M. Grams, and L. Papritz, 2020.: The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events, Weather Clim. Dynam., 1, 373–388, https://doi.org/10.5194/wcd-1-373-2020
- Afargan-Gerstman, H., I. Polkova, L. Papritz, P. Ruggieri, M. P. King, P. J. Athanasiadis, J. Baehr, and D. I. V. Domeisen, 2020: Stratospheric influence on North Atlantic marine cold air outbreaks following sudden stratospheric warming events, Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020
- Saggiorato B., L. Nuijens, A. P. Siebesma, S. de Roode, I. Sandu, and L. Papritz, 2020: The influence of convective momentum transport and vertical wind shear on the evolution of a cold air outbreak, Journal of Advances in Modeling Earth Systems, 12, e2019MS001991, doi: 10.1029/2019MS001991
- Spensberger, C., E. Madonna, M. Boettcher, C. M. Grams, L. Papritz, J. F. Quinting, M. Röthlisberger, M. Sprenger, and P. Zschenderlein, 2020: Dynamics of concurrent and sequential Central European and Scandinavian heatwaves. Quart. J. Roy. Meteor. Soc., 146, 2998– 3013, doi: 10.1002/qj.3822
2019:
- Papritz, L., E. Rouges, F. Aemisegger, and H. Wernli, 2019: On the thermodynamic pre‐conditioning of Arctic air masses and the role of tropopause polar vortices for cold air outbreaks from Fram Strait. Journal of Geophysical Research: Atmospheres, 124, 11033 – 11050, doi: 10.1029/2019JD030570
- Renfrew, I.A., R.S. Pickart, K. Våge, ... , L. Papritz, ..., 2019: The Iceland Greenland Seas project, Bull. Amer. Meteor. Soc., 100, 1795 - 1817, doi: 10.1175/BAMS-D-18-0217.1
2018:
- Wernli H. and L. Papritz, 2018: Role of polar anticyclones and midlatitude cyclones for Arctic summertime sea ice melting, Nature Geosci., 11, 108 - 113, doi: 10.1038/s41561-017-0041-0
- Papritz L. and H. Sodemann, 2018: Characterising the local and intense water cycle during a cold air outbreak in the Nordic Seas, Mon. Wea. Rev., 146, 3567 - 3588, doi: 10.1175/MWR-D-18-0172.1
- Papritz L., and C. M. Grams, 2018: Linking low-frequency large-scale circulation patterns to cold air outbreak formation in the northeastern North Atlantic. Geophys. Res. Lett., 45, 2542 - 2553, doi: 10.1002/2017GL076921
[GRL cover] - Aemisegger F., and L. Papritz, 2018:A climatology of strong large-scale ocean evaporation events Part I: identification, global distribution, and associated climate conditions, J. Climate, 31, 7287 - 7312, doi: 10.1175/JCLI-D-17-0591.1
- Våge K., L. Papritz, L. Håvik, M. A. Spall, and G. W. K. Moore, 2018: Ocean convection linked to the recent ice edge retreat along east Greenland, Nat. Commun., 9, 1287, doi: 10.1038/s41467-018-03468-6
- Beusch L., S. Raveh - Rubin, M. Sprenger, and L. Papritz, 2018: Dynamics of a Puelche Foehn event in the Andes, Meteorol. Z., 27, 67 - 80, doi: 10.1127/metz/2017/0841
2017:
- Papritz, L., 2017: Synoptic environments and characteristics of cold air outbreaks in the Irminger Sea, Int. J. Climatol., 37 (Suppl 1), 193 - 207, doi: 10.1002/joc.4991
- Papritz, L. and T. Spengler, 2017: A Lagrangian climatology of cold air outbreaks in the Irminger and Nordic seas and their role in shaping air-sea heat fluxes, J. Climate, 30, 2717 - 2737, doi: 10.1175/JCLI-D-16-0605.1
2016:
- Woollings, T., L. Papritz, C. Mbengue, and T. Spengler, 2016: Diabatic heating and jet stream shifts: A case study of the 2010 negative NAO winter, Geophys. Res. Lett., 43, 9994 - 10002, doi: 10.1002/2016GL070146
- Papritz, L. and S. Pfahl, 2016: Importance of latent heating in mesocyclones for the decay of cold air outbreaks: A numerical process study from the Pacific sector of the Southern Ocean, Mon. Wea. Rev., 144, 315-336, doi: 10.1175/MWR-D-15-0268.1
2015:
-
Papritz, L. and T. Spengler, 2015: Climatological analysis of the slope of isentropic surfaces and its tendencies over the North Atlantic. Quart. J. Roy. Meteor. Soc., 141, 3226-3238, doi: 10.1002/qj.2605
-
Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air-sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342-364, doi: 10.1175/JCLI-D-14-00482.1
- Byrne, D., L. Papritz, I. Frenger, M. Münnich, and N. Gruber, 2015: Atmospheric response to mesoscale sea surface temperature anomalies: assessment of mechanisms and coupling strength in a high resolution coupled model over the South Atlantic. J. Atmos. Sci., 72, 1872-1890, doi: 10.1175/JAS-D-14-0195.1
2014:
- Papritz, L., S. Pfahl, I. Rudeva, I. Simmonds, H. Sodemann, and H. Wernli, 2014: The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes. J. Climate, 27, 6205–6224, doi: 10.1175/JCLI-D-13-00409.1
2013:
-
Papritz, L. and S. Schemm, 2013: Development of an idealised downstream cyclone: Eulerian and Lagrangian perspective on the kinetic energy. Tellus A, 65, 19539, doi: 10.3402/tellusa.v65i0.19539.
-
Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627–652, doi: 10.1175/JAS-D-12-0147.1
Course Catalogue
Autumn Semester 2024
Number | Unit |
---|---|
701-0479-00L | Environmental Fluid Dynamics |